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THE UNIQUENESS THEOREM FOR HYDROGEN ATOM EQUATION
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Abstract. In this article, we prove that the difference between two potential functions becomes

sufficiently small whenever the spectrums are chosen sufficiently close to each other.
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1. Introduction

The importance of mathematics arises from the study of problems in the real world. Inverse
problem for the differential operator consists of reconstruction of the operator by its spectral
data. The spectral characteristics are spectra, spectral functions, scattering data, norming con-
stants, etc. The concept of inverse problem plays an important role in mathematics and physics.
The progress in applied mathematics has been obtained by the extension and development of
many important analytical approaches and methods.

Borg [3] proved that two spectra uniquely determine the potential of the Sturm-Liouville
equation. Tikhonov [18] proved uniquely of the solution of the problem of electromagnetic
sounding. Marchenko [13, 14] showed that two various spectra of the one singular Sturm-
Liouville equation determine this equation uniquely. Later, Krein [10] gave solution of the inverse
Sturm-Liouville problem. Gelfand -Levitan [5, 6] showed an algorithm for construction of q(x);h
and H. Also inverse problems for singular equations have been shown in the monographs in
[4, 9]. Further Mizutani [15] improved a different algorithm, which is a slight modification of
Gelfand-Levitan’s model. One of this kind of inverse problems was considered by numerous
authors (see [1], [2], [7-9], [12], [16], [17]).

In this paper, we consider singular Sturm-Liouville equation:

d2R

dr2
+

a

r

dR

dr
− ` (` + 1)

r2
R +

(
E +

a

r

)
R = 0 (0 < r < ∞) . (1)

In quantum mechanics the study of the energy levels of the hydrogen atom leads to this equation
[12]. Here R is the distance of the mass center to the origin, ` is a positive integer, a is a real
number, E is an energy constant and r is the distance between the nucleus and electron.

In [15] Mizutani showed the uniqueness of the potential function for regüler Sturm-Liouville
problem according to normalizing constants and eigenvalues. Our aim is to apply the same
method for singular Sturm- Liouville problem.
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2. Preliminary knowledge

Substitution R = y/r reduces equation (1) to the form

d2y

dr2
+

{
E +

a

r
− ` (` + 1)

r2

}
y = 0. (2)

In most cases we took the reference potential to be

V (r) =
a

r
− ` (` + 1)

r2
.

When V (r) is defined by last differential equation, it contains a centripetal and Colomb part,
the usual singularities of the nuclear problem [2].

Just as in the case of Bessel’s equation, one can show that in a finite interval [0, b] , the
spectrum is discrete. From [12] and [1], the solution of (2) is bounded at zero.

Now, consider {λn}∞n=0 as a spectrum of the following singular Sturm-Liouville problem

Ly = −y′′ + q (r) y = λy, (0 < r ≤ π) (3)

with boundary conditions
y (0) = 0, (4)

y(π, λ) cosβ + y′(π, λ) sinβ = 0, (5)

where q (r) = `(`+1)
r2 − a

r + q0 (r) and β is a real number.
Consider Sturm-Liouville equation for having different potential

L̃y = −y
′′

+ q̃ (r) y = λ̃y, (0 < r ≤ π) , (6)

where q̃ (r) = `(`+1)
r2 − ã

r + q̃0 (r) .

Let
{

λ̃n

}∞
n=0

be the spectrum of (6) with (4)-(5).

One has the following asymptotic formulas for solutions ϕ (r, λ), of the problem (3),(4) eigen-
values λn, λ̃n and normalizing coefficients αn, α̃n, respectively (see [1, 2])

ϕ (r, λ) = cos
[
(n + `/2) r − `π

2

]
+ O

(
lnn

n

)
, (7)

ϕ′ (r, λ) = − (n + `/2) sin
[
(n + `/2) r − `π

2

]
+ O

(
ln n

n

)
. (8)

λn =
(

n +
`

2

)2

+
a

π
ln

(
n +

1
2

)
+ O

(
ln2 n

n3

)
,

λ̃n =
(

n +
`

2

)2

+
ã

π
ln

(
n +

1
2

)
+ O

(
ln2 n

n3

)
.

(9)

αn = ‖ϕn‖2 =

π∫

0

ϕ2
n (r) dr =

π

2
+

aπ2

4
1

n + 1
2

+ O

(
ln n

n3

)
, (10)

α̃n = ‖ϕ̃n‖2 =

π∫

0

ϕ̃2
n (r) dr =

π

2
+

ãπ2

4
1

n + 1
2

+ O

(
ln n

n3

)
. (11)
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Theorem 2.1 (17). Let D be a linear topological space and D1, D2 ⊂ D. The transformation
operator, X = XL,L̃, mapping D1 to D2 can be defined as follows

X [ϕ (r, λ)] = ϕ̃ (r, λ) = ϕ (r, λ) +

r∫

0

K (r, s) ϕ (s, λ) ds. (12)

The kernel in operator (12) is a solution of the differential equation

∂2K (r, s)
∂r2

−
(

` (` + 1)
r2

− ã

r
+ q̃0 (r)

)
K (r, s) =

∂2K (r, s)
∂s2

−
(

` (` + 1)
s2

− a

s
+ q0 (s)

)
K (r, s)

and also satisfies the following conditions

K (r, r) = 1
2

r∫

0

(q̃ (s)− q (s)) ds,

K (r, 0) = 0.

(13)

Lemma 2.1. There exists a constant M > 0, such that

|ϕ (r, λ)|+ |ϕ′ (r, λ)|
λ

≤ M, (14)

λ
∣∣∣ ·ϕ (r, λ)

∣∣∣ +
∣∣∣ ·ϕ′ (r, λ)

∣∣∣ ≤ M (15)

hold for every λ ≥ 1 and 0 < r ≤ π (
·
ϕ (r, λ) = dϕ

dλ ).

Proof. Using the equations (7) and (8) in (14) , we obtain the following inequality
[∣∣∣∣cos

[
(n + `/2) r − `π

2

]∣∣∣∣ +

∣∣− (n + `/2) sin
[
(n + `/2) r − `π

2

]
+ O

(
ln n
n

)∣∣
λn

]
≤ M,

where 0 < r ≤ π and −1 ≤ cos
[
(n + `/2) r − `π

2

] ≤ 1, −1 ≤ sin
[
(n + `/2) r − `π

2

] ≤ 1. Then
using the formulas (9) , we obtain (14). We can find inequality (15) , in a similar way. ¤

Note that using

F (r, s) =
∞∑

n=1


ϕ

(
r, λ̃n

)
ϕ

(
s, λ̃n

)

α̃n
− ϕ (r, λn) ϕ (s, λn)

αn


 (16)

we have

K (r, s) + F (x, s) +

r∫

0

K (r, t) F (t, s) dt = 0 for 0 < s ≤ r ≤ π.

In [15] Mizutani showed the uniqueness of the potential function for Sturm-Liouville prob-
lem according to normalizing constants and eigenvalues. The purpose of our study is to give
the sctructure concerning the difference q (r) − q̃ (r) for the differential operators having the
singularity type `(`+1)

r2 − a
r , by using Mizutani method.
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3. Main results

Mail result of the paper is given by the following theorem.

Theorem 3.1. If

A ≡
∞∑

n=1

[
|α̃n − αn|+

∣∣∣λ̃n − λn

∣∣∣
]

(17)

is sufficiently small, then we get

max
0<r≤π

|q (r)− q̃ (r)| ≤ C1A, (18)

where C1 > 0 is a constant depending only on q (r) and h.

Proof. Let’s solve the linear integral equation (16). Firstly let us start from F (s, t), then con-
structing the iterated kernels F (n) (s, t; r), (n = 1, 2, ...). We get,

F (1) (s, t; r) = F (s, t) , F (n+1) (s, t; r) =

r∫

0

F (s, u) F (n) (u, t; r) du, n ≥ 1. (19)

We take

S (s, t; r) =
∞∑

n=1

(−1)n F (n) (s, t; r) ,

furthermore, assuming that
r∫

0

r∫

0

|F (s, t)|2 dsdt < 1 (20)

we can see that

K (r, s) = S (r, s; r) (21)

for 0 < s ≤ r ≤ π.
Then it follows from (13) that

1
2

(q (r)− q̃ (r)) = − d

dr
K (r, r) . (22)

Let’s give the following Lemma and its proof to complete the proof of the Theorem 3.1.

Lemma 3.1. By virtue of the (16), let us define F (r, s). Then we get

1
2

(q (r)− q̃ (r)) = − d

dr
F (r, r)−K2 (r, r) + 2

r∫

0

Fr (r, u) K (r, u) du,

where F (r, s) has a continuous derivative and the condition (20) is satisfied.

Proof. Using formula (19)-(22), we obtain the following equation

1
2

(q (r)− q̃ (r)) =
d

dr
F (r, r) +

∞∑

n=1

(−1)n d

dr
F (n+1) (r, r; r) . (23)
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Now we estimate
d

dr
F (n+1) (r, r; r):

d

dr
F (n+1) (r, r; r) =

{
F (n+1)

s + F
(n+1)
t + F (n+1)

r

}
s=r
t=r

=

=





r∫

0

Fs (s, u) F (n) (u, t; r) du +

r∫

0

F (n) (s, u; r) Ft (u, t) du + F (n+1)





s=r
t=r

=

= 2

r∫

0

Fr (r, u) F (n) (r, u; r) du +
∂

∂r




r∫

0

F (s, u) F (n) (u, t; r) du




s=r
t=r

=

= 2

r∫

0

Fr (r, u) F (n) (r, u; r) du +
n∑

k=1

F (k) (r, r; r) F (n+1−k) (r, r; r) .

(24)

Using (24) in (23), the equation

1
2

(q (r)− q̃ (r)) =
d

dr
F (r, r) + 2

r∫

0

Fr (r, u) K (r, u) du−K2 (r, r)

is obtained. ¤

Now, we can prove the of Theorem 3. Let us take A0 as follows:

A0 =
1
2

inf
n

αn.

A0 is positive from the asymptotic formula (9), (10) and (11). We suppose that

A ≡
∞∑

n=0

[
|α̃n − αn|+

∣∣∣λ̃n − λn

∣∣∣
]
≤ A0. (25)

Then we get
αn ≥ 2A0 and α̃n ≥ A0 for each n. (26)

Differentiating formally the right side of (16) with respect to r, we obtain the following equation

Fr (r, s) =
∞∑

n=1


ϕ′

(
r, λ̃n

)
ϕ

(
s, λ̃n

)

α̃n
− ϕ′ (r, λn) ϕ (s, λn)

αn


 .

Let’s add ϕ′(r,λn)ϕ(s,λn)
α̃n

to last equation and then subtract it. Then we find

Fr (r, s) =
∞∑

n=1




(
αn − α̃n

α̃nαn

)
ϕ′ (r, λn)ϕ (s, λn) +

1
α̃n

λ̃n∫

λn

(
ϕ′ (r, λ) ϕ (s, λ)

)·
dλ


 .

By virtue of (25) and (26) and Lemma 1 it is seen that F (r, s) has a continuous derivative and

|Fr (r, s)| ≤ C ′
∞∑

n=1

[
|α̃n − αn|+

∣∣∣λ̃n − λn

∣∣∣
]
≡ C ′A. (27)
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We can also write ∣∣∣∣
d

dr
F (r, r)

∣∣∣∣ ≤ 2C ′A.

Using the same method, we obtain

|F (r, s)| =
∞∑

n=1

∣∣∣∣∣∣∣

(
αn − α̃n

α̃nαn

)
ϕ (r, λn) ϕ (s, λn) +

1
α̃n

λ̃n∫

λn

[ϕ (r, λ) ϕ (s, λ)]· dλ

∣∣∣∣∣∣∣

|F (r, r)| =
∞∑

n=1

∣∣∣∣∣∣∣

(
αn − α̃n

α̃nαn

)
ϕ (r, λn)2 +

1
α̃n

λ̃n∫

λn

[
2
·
ϕ (r, λ) ϕ (r, λ)

]
dλ

∣∣∣∣∣∣∣
.

By means of asymptotic formulas (7), (8) and 0 < r ≤ π, −1 ≤ sin r ≤ 1, −1 ≤ cos r ≤ 1,

|F (r, r)| =
∞∑

n=1

∣∣∣∣∣
(

αn − α̃n

α̃nαn

)(
cos

[
(n + `/2) r − `π

2

]
+ O

(
ln n

n

))2

−

− 1
α̃n

λ̃n∫

λn

2
[√

λ sin
[(√

λ
)

r − `π

2

]
+ O

(
ln n

n

)]
×

×
[(

cos
[
(n + `/2) r − `π

2

]
+ O

(
ln n

n

))]
dλ

∣∣∣∣ .

It follows from the last equation that

|F (r, r)| ≤
∞∑

n=1

∣∣∣∣∣∣∣

(
αn − α̃n

α̃nαn

)
c1 − 1

α̃n

λ̃n∫

λn

2c2dλ

∣∣∣∣∣∣∣
=

= C ′′
∞∑

n=1

|α̃n − αn|+
∣∣∣λ̃n − λn

∣∣∣ .

(28)

From (28), we estimate
|F (r, r)| ≤ C ′′A,

where C ′ and C ′′are constants depending only on q(x) and h.
If πC ′′A is sufficiently small e.g., πC ′′A < 1

2 , using formula (21), we can write the following
equation

|K(r, s)| =
∞∑

n=1

(−1)n F (n) (r, s; r) . (29)

Because of formula (19), we construct the iterated kernels F (n) as follows:
∣∣∣F (1)

∣∣∣ = |F (r, r)| ≤ C ′′A,

∣∣∣F (2)
∣∣∣ =

∣∣∣∣∣∣

r∫

0

FF (1)du

∣∣∣∣∣∣
=

∣∣∣∣∣∣

r∫

0

FFdu

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

r∫

0

(
C ′′A

)2
du

∣∣∣∣∣∣
=

(
C ′′A

)2
π

∣∣∣F (3)
∣∣∣ =

∣∣∣∣∣∣

r∫

0

FF (2)du

∣∣∣∣∣∣
=

∣∣∣∣∣∣

r∫

0

(
C ′′A

) (
C ′′A

)2
πdu

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

r∫

0

(
C ′′A

)3
π2du

∣∣∣∣∣∣
=

(
C ′′A

)3
π2
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...∣∣∣F (n)
∣∣∣ ≤ 1

π

(
πC ′′A

)n
. (30)

Using (29) in (28), we get

|K(r, s)| ≤
∣∣∣∣∣
∞∑

n=1

1
π

(
πC ′′A

)n

∣∣∣∣∣ ≤ 2C ′′A. (31)

By Lemma 2 and (27)-(31), consequently, we obtain

|q (r)− q̃ (r)| ≤ C1

∞∑

n=1

[
|α̃n − αn|+

∣∣∣λ̃n − λn

∣∣∣
]

for A ≤ min
{

A0, (2πC ′′)−1
}

. This completes the proof. ¤

We can give the following a numerical example as an application of Theorem 3.1.
Example. If we substitute a = 1

4 , ` = 1, q0 (r) = 0 and ã = 1
6 , ` = 1, q̃0 (r) = 0 in to the

equations (3) and (6) respectively, then we obtain the following equations

−y′′ +
(

2
r2
− 1

4r

)
y = λy (32)

and

−y′′ +
(

2
r2
− 1

6r

)
y = λy. (33)

According to the equations (32) and (33) we can write the formulas (9), (10) and (11) in the
following forms respectively. For n = 1,

α1 =
π

2
+

π2

24
, λ1 =

9
4

+
ln 3

2

4π
,

α̃1 =
π

2
+

π2

36
, λ̃1 =

9
4

+
ln 3

2

6π
.

Taking h = 1, r = 0, 1, π=̃3, ln 3
2=̃0, 4, we get,

A=̃0, 13611.

Choosing C1 = q(r)
30h we have

C1A=̃0, 89606.

According to the given data, difference of the potential functions is 0, 83333 approximately.
Therefore inequality (18) is satisfied.

Let the spectral datas of the first equation be the same and change normalizing coefficients
and eigenvalues of the second equation as follows:

α̃1 =
π

2
+

π2

30
, λ̃1 =

9
4

+
ln 3

2

5π
.

By necessary computations, we find that

C1A =̃ 0, 53763

max
0<r≤π

|q (r)− q̃ (r)| = 0, 5

where ã = 1
5 .

Similarly, taking ã = 0, 26 we obtain the following equations

α̃1 =
π

2
+

26π2

600
, λ̃1 =

9
4

+
26
300

ln
3
2
,
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C1A =̃ 0, 105,

max
0<r≤π

|q (r)− q̃ (r)| = 0, 1.

As we can see from the discussions above, if the normalizing coefficients and eigenvalues are
chosen very close to each other, then the difference of potential functions becomes sufficiently
small.

Obviously, we see that Theorem 3.1 is satisfied by example.

4. Conclusion

In this paper, we have extended the scope of the Mizutani method by proving the uniqueness
theorem for the differential operator having the singularity type `(`+1)

r2 − a
r .
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